Набережные Челны
+7 (8552) 46-63-98
Мы дарим свет
Интернет магазин
Ваша корзина пуста
Поиск   
 
 
 
 
 

Цоколи светодиодных ламп

Напряжение

Производители

Новости

 

Светоотдача светодиодов

Центральный элемент полупроводникового диода — p-n-переход. C одной стороны от него, в области n, ток переносят электроны, а с другой стороны, в области p, — дырки, то есть свободные места в кристаллической структуре полупроводника, где электрона не хватает. При пропускании тока электроны и дырки движутся навстречу друг другу. В области p-n-перехода электроны попадают в дырки, заполняют и нейтрализуют их. В этом процессе рекомбинации выделяется энергия.

Далеко не всегда эта энергия испускается в виде света, то есть фотонов. Например, кремний, основной материал электроники, устроен так, что свободные электроны и дырки рекомбинируют, порождая слабенькую акустическую волну — фонон, — которая быстро рассеивается, переходя в тепло. Поэтому микросхемы греются, а не светятся.

Но в некоторых полупроводниках рекомбинация сопровождается испусканием кванта света, энергия которого зависит от разности энергий электрона и дырки — она примерно постоянна для каждого полупроводника. Например, арсенид галлия служит для создания инфракрасных и красных светодиодов. Тройное соединение галлия, мышьяка и фосфора дает более яркие красные светодиоды, а также желто-зеленые. Различные соединения, содержащие алюминий, индий, галлий и фосфор, стали основой для ярких светодиодов красного, оранжевого и желтого свечения. Фосфид галлия со специальными оптически активными примесями дает зеленое свечение. Нитрид галлия — основной современный материал для ультрафиолетовых, синих и зеленых светодиодов.

Единичный светодиод не может излучать белый свет, поскольку энергия испускаемых им фотонов примерно одинакова. По этому для имитации естественного дневного света обычно используют либо матрицы из разноцветных диодов, либо явление люминесценции. Сегодня большинство белых светодиодов — синие или даже ультрафиолетовые, но благодаря слою люминофора их излучение трансформируется в свет, близкий к белому.

Внутренний квантовый выход современных полупроводниковых светящихся кристаллов близок к 100%. То есть каждая пара «электрон — дырка» дает фотон. Если бы все эти фотоны, рожденные в глубине светодиода, выходили наружу, такой источник практически не нагревался бы и всю подведенную энергию превращал в свет. Но, конечно, часть фотонов поглощается внутри кристалла, не успевая дойти до его поверхности.

Снижение таких потерь — одно из основных направлений совершенствования светодиодов. Для этого осваивают новые материалы,  используют так называемые гетероструктуры, состоящие из множества тончайших слоев различных полупроводников, чередующихся в определенной последовательности.

В результате КПД светодиодов, который у первых промышленных устройств был меньше 1%, удалось поднять выше 50%, а светоотдача выросла с 1 до 150 люмен на ватт, что вдвое больше, чем у энергосберегающих люминесцентных ламп. Теоретический максимум светоотдачи для совершенно идеального источника белого света около 250 лм/Вт, так что до предела осталось не так уж и далеко. Как говорят специалисты, этот уровень светоотдачи светодиодов будет достигнут уже в ближайшем десятилетии.

Другое не менее важное направление развития — получение максимального количества света с минимальной активной площади кристалла. И здесь многое зависит уже не только от базовых свойств полупроводникового материала, но и той степени дефектности кристаллической структуры, которая возникает в процессе выращивания рабочих гетероструктур. Чем меньше рабочий объем светодиода, тем больше их можно изготовить за один цикл технологического процесса и тем дешевле будет светодиодная лампочка. Но с уменьшением размеров становится труднее отводить от светодиода тепло, поэтому увеличение поверхностной яркости напрямую связано с повышением КПД.

 

http://www.vokrugsveta.ru/vs/article/7170/

 
     
 
Copyright © 2011 Gauss led
Тел.: (8552) 46-63-98
светодиодные лампы панель администратора
 
Создание сайта Вебцентр